Canadian Clean Power Coalition: Current Status of Clean Coal Technologies Presented to

Wisconsin Clean Coal Study Group Madison, WI February 10, 2006

Canadian CLEAN POWER COALITION

Bob Stobbs
Executive Director

Presentation Outline

- → Canadian Clean Power Coalition Overview
 - → Phase I Studies
 - → Phase II Status
 - → Gasification Technologies
 - → ASC Technologies

Canada's Fossil Fuel Energy Reserves

■ Coal ■ Oil Sands Bitumen ■ Gas ■ Conventional Oil

The Canadian Clean Power Coalition

- Formed in 2000
- A national association of Canadian coal and coal-fired electricity producers
- Represents over 90 percent of Canada's coal-fired electricity generation
- Industry/government partnership
- Objective is to demonstrate that coal-fired electricity generation can effectively address all environmental issues projected in the future, including CO₂

www.canadiancleanpowercoalition.com

Current Coalition Participants

- ATCO Power Canada Ltd.
- Basin Electric Power Cooperative (North Dakota)
- EPCOR Utilities Inc.
- EPRI (Electric Power Research Institute)
- Luscar Ltd.
- Nova Scotia Power Inc.
- Saskatchewan Power Corporation
- TransAlta Corporation

In addition, in Phase I, IEA (GHG and CCC) and Ontario Power Generation Inc. participated

Government Participation

- Natural Resources Canada
- Alberta Energy Research Institute
- Saskatchewan Industry and Resources

CCPC Goal: Build and Operate a Clean Coal Demonstration Plant

- Construct and operate a full-scale demonstration project to remove greenhouse gas and all other emissions of concern from a coal-fired power plant by 2012
- Provide flexible fuel capability— bituminous, subbituminous, lignite, and petroleum coke
- To accomplish this at a competitive cost of power

CCPC Plan

2000: Formation & planning

2001 - 2003: Phase I technology studies

2004: Results assessment and Phase II formation

2004 - 2006: Phase II optimization studies

2006: Status assessment & commitment to demo project

2007 - 2011: Design & construction

2012: Operation

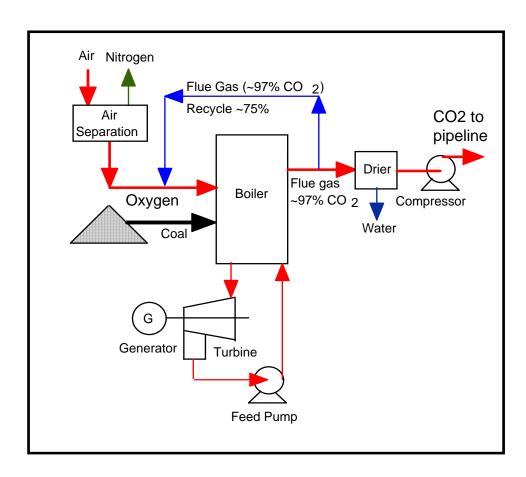
Phase I Studies 2001 - 2003

- Review of clean coal technology pre-selected Integrated
 Gasification Combined Cycle (IGCC) as the likely best option.
- Emission control technology evaluation looked at the limits of "how low can we go" to set the goals for the plant design studies.
- Three major plant design concepts were studied:
 - Conventional steam cycles with amine scrubbing for CO₂ control
 - Conventional steam cycles using CO₂/Oxygen combustion for CO₂ control
 - IGCC with CO shift and CO₂ extraction
 - Both new plant and retrofit cases examined.
- Review of options for use or storage of the extracted CO₂

Retrofit Options for CO₂ Extraction

- Options evaluated:
 - Amine scrubbing of flue gas
 - CO₂/O₂ Combustion
- Major challenges to reduce auxiliary energy requirements
- Focus on integration options

Flue Gas Amine Scrubbing


Issues

- High amine regeneration heat load
- Fate of mercury in amine system

CO₂/O₂ Combustion

<u>Issues</u>

- Boiler performance with recycle flue gas
- Air entrainment
- Shaft power for ASU
- Quality of CO₂

Greenfield Plant Technology Options

- Pre-screening study showed gasification likely to be the best option
- Provides high efficiency, ease of emission reduction and lowest energy penalty to add CO₂ capture
- Efficiency improvements from new advanced gas turbines

Coal Gasification- IGCC with CO₂ Capture

IGCC Issues

- Gasification characteristics of bituminous, subbituminous and lignite coals
- Gasifier feed systems: wet vs dry vs CO₂ slurry
- Syngas composition, clean-up, fate of mercury
- Purity specifications of captured CO₂
- Reliability of gasification plant to meet power generation service factors
- Integration of plant components to minimize capital costs and optimum performance

Emissions Control Study

- Looked at retrofit emission control for NOx,
 SOx, Hg, particulates and all other pollutants
- Excluded CO₂
- Allows net costs for CO₂ to be calculated by comparison with the other studies

CO₂ Utilization & Storage Evaluation

- Reviewed prior work on EOR & ECBM use in western sedimentary basin
- Separate study for Nova Scotia to examine potential for ECBM in coal beds
- Evaluation of storage options in deep saline aquifers and depleted reservoirs

Phase I Dates

- Pre-screening study completed early 2002
- Control options for emissions all except CO₂ completed December 2002
- Studies to assess technology options and costs for retrofit plant options and greenfield plant options completed July 2003
- Examination of CO₂ utilization and storage completed August 2003 (Nova Scotia portion completed early 2004)
- Phase I final report completed early 2004.

Plants selected for comparative evaluation

- Trenton # 6, a 150 MWe bituminous coal fired power plant located in Nova Scotia
- Shand, a 300 MWe lignite coal fired power plant located in Saskatchewan
- Genesee, a 400 MWe sub-bituminous coal fired power plant located in Alberta

Target Emission Levels-Comparison with Natural Gas Combined Cycle (NGCC)

Type	Units	Lignite	Sub-bit	Bitumi-	NGCC
				nous	
NOx	Gram/MWh	27.6	27.6	27.6	27.6
	net				
SOx	Ng/Joules	0.7	0.7	0.7	0.7
	fired				
$PM_{10, 2.5}$	Ng/Joule	2	2	2	2
, , , ,	fired				
Mercury	Pg/J	0.5	0.3	0.3	N/A
CO	ppm @ 3%	40	40	40	45
	O2				
SO3	ppmv	5	5	5	N/A
NH3	ppmv	1	1	1	1
Heavy					
Metals					
Se		6	6	6	
As	Mg/Nm^3	6	6	6	
Cd		2	2	2	

Evaluation of Retrofit Plants for all Emissions Except CO₂

Retrofit Plants for all Emissions Except CO₂ - Capital Costs

Retrofit Plants for all Emissions Except CO₂ - O&M Costs

Unit Capital Cost & Cost of Electricity Comparisons for 90 % CO₂ Capture

CO₂ Storage and Utilization Options in Western Canada

Parameter	Enhanced Oil Recovery	Enhanced Coal Bed Methane Recovery	Storage in Depleted Reservoirs	Storage in Deep Saline Aquifers
Status	Commercial	Pilot	Commercial	Commercial
Capacity Limits	6-7 projects	None	≽50 projects	None
Breakeven Cost*, \$US/t	24.3	6.4	-2.6	-

^{*} Breakeven cost is the maximum that the operator could pay to achieve a zero NPV at a 15% discount rate

CCPC – Phase I Results

- Texaco Quench evaluated for Pittsburgh # 8 and sub-bituminous coal but Texaco declined to provide data for lignite. Shell selected for lignite.
- Fluor has improved the design of their Econamine (MEA) process for flue gas removal of CO₂ reducing the energy penalty from ~1750 to ~1185 Btu of steam/lb of CO₂.
- Although the cost of CO₂ avoided is lower for IGCC than for amine scrubbing for the bituminous and sub-bituminous coals at grass roots plants the differential is less than with previous studies
- For lignite Shell IGCC with pre combustion CO₂ removal was worse than amine scrubbing. All current commercial gasification technologies have poor performance with low rank and high ash coals
- Oxyfuel (O₂ with recycle CO₂) was evaluated to have a significantly higher COE than amine scrubbing for a grass roots plant.

CCPC Phase II

- Goal is to fill in technical uncertainties before moving to a firm project.
- Covers the following scope:
 - Gasification technology evaluation to develop better technology for low rank western Canadian coals.
 - Amine scrubbing & CO₂/O₂ combustion optimization with advanced supercritical steam cycle.
- Upgrading of the coal prior to burning or gasification, by drying or blending with petroleum coke or other residues, will be evaluated.
- Business case development covering multiple cases:
 - Alberta: coal, bitumen and petcoke gasification
 - Saskatchewan: lignite and petcoke gasification
- Polygeneration of power, hydrogen, steam and CO₂ will be evaluated.

Phase II Status - Gasification

- Gasification study on low rank coal is in progress.
- Review of available gasification processes completed
- Now working with a short list of 3 developers to evaluate benefits of projected gasification process upgrades to performance & costs.
- Focus is on process developments to:
 - increase gasifier pressure
 - simplify gas cooling prior to cleanup
 - improve coal feed systems
- Study will later look at blends of coal & petroleum coke with co-production of power & hydrogen etc.

Gasification Technologies Considered

- British Gas Lurgi
- ConocoPhillips *
- EAGLE
- Future Energy *
- GE Energy
- High Temperature Winkler
- Sasol-Lurgi
- Shell *
- KBR Transport Gasifier

^{*} Selected for further evaluation

ConocoPhillips Entrained Slagging Transport Reactor (ESTR)

<u>Advantages</u>

- Dry feed to 1st Stage
- High efficiency
- Slagging gasifier
- High pressure operation

<u>Disadvantages</u>

- Refractory lined
- Higher methane content (could limit CO₂ recovery)
- No water quench

Future Energy

<u>Advantages</u>

- Dry feed
- Cooling screen
- Water quench
- Slagging gasifier

Disadvantages

 Lack of operating experience at high pressure

Shell Coal Gasification Process (SCGP)

<u>Advantages</u>

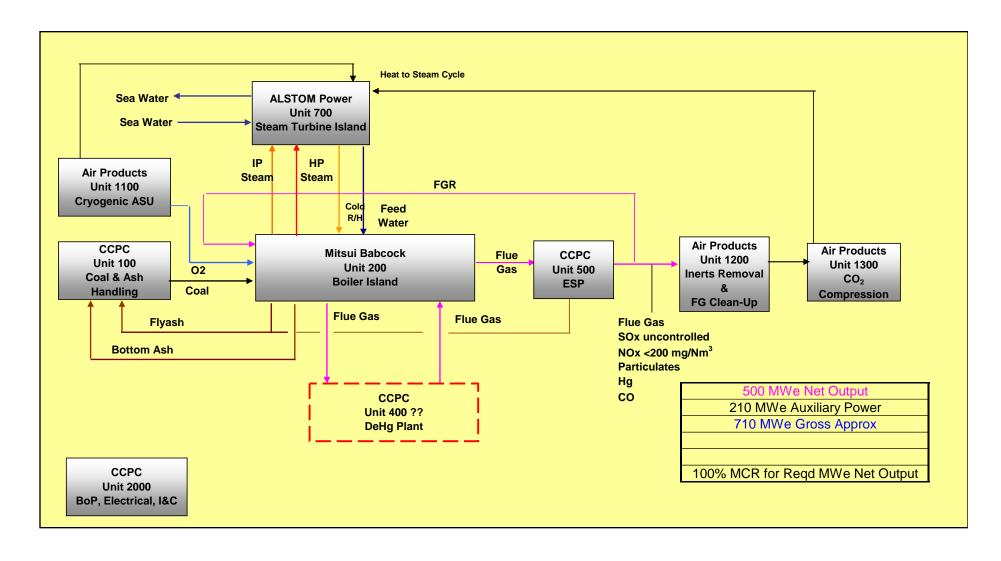
- Dry feed
- Cooling screen
- High pressure
- Water quench*

<u>Disadvantages</u>

- *No quench option in operation
- Lack of experience at high pressure

Phase II Status - Advanced Supercritical Steam

- Advanced supercritical steam optimization studies will be done by Mitsui Babcock and Alstom, with support from the UK Government (DTI).
- The MHI advanced amine scrubbing system will be used for amine optimization studies.
- CO₂/O₂ combustion optimization will be included, with support from Air Products.
- Studies on thermal integration to improve efficiency will be included in scope (Imperial College).


Summary of Phase II ASC Case Studies

- R0 Base Case Plant an optimized air-fired ASC PC plant without CO₂ capture with appropriate emissions control, assume space is left to retrofit oxyfuel or post-combustion capture
- A1 Oxy-Combustion Capture Plant an optimized oxygen-fired ASC PC boiler with oxyfuel CO₂ capture
- A2 Oxy-Combustion capture of base case plant conversion of the base case R0 plant to CO₂ capture plus examination of pre-investment options
- Post-combustion Capture Plant an optimized air-fired ASC PC boiler with amine-based post-combustion CO₂ capture
- B2 Post-combustion capture of base case plant conversion of the base case R0 plant to amine-based post-combustion CO₂ capture plus examination of pre-investment options

Phase II - Oxy-Combustion CO₂ Capture

Phase II - Amine-Based Post Combustion CO₂ Capture

Expected Phase II Outcomes

- Optimization of the 3 technology options for clean coal with CO₂ capture.
- Refine the capital and operating cost estimates, price of power and cost of CO₂ removal.
- Develop the business cases to select site and technology for demo project. Possible sites include:
 - Shand in SK and/or Keephills, AB
 - Athabasca Oil Sands, Alberta
 - Refinery applications in Alberta or Saskatchewan that need power, steam, hydrogen
- Will allow planning for the implementation phase to build and operate the demonstration plant to proceed.
- Completion by mid-2006.

Conclusions

- Production of clean power with 90% CO₂ capture and removal of all emissions of concern is technically feasible and can become economically viable at certain locations
- Integrated gasification of low cost fuels (coal, coke) to co-produce power, hydrogen, heat and syngas (polygeneration) offers attractive commercial opportunities in Western Canada based on large markets for:
 - Hydrogen & heat for oil sands operations (replacing high cost natural gas)
 - Synthesis gas for chemical production
 - CO₂ for enhanced recovery of conventional oil (EOR) and for extraction of coal bed methane (ECBM). Excess CO₂ can be sequestered in deep aquifers
- Gasification costs and reliability depend on feed quality and there is little experience with low rank Western Canadian lignites, subbituminous coals and coal-coke mixtures

Effect of Natural Gas Prices on Electricity All plants include 90% CO₂ capture

Questions?